
1

Risk-based Object Oriented Testing

Linda H. Rosenberg, Ph.D. Ruth Stapko Albert Gallo
NASA GSFC SATC NASA, Unisys SATC NASA, Unisys

Code 302 Code 300.1 Code 300.1
Greenbelt, MD 20771 Greenbelt, MD 20771 Greenbelt, MD 20771

301-286-0087 301-286-0101 301-286-8012
Linda.Rosenberg@gsfc.nasa.gov Rstapko@pop300.gsfc.nasa.gov Al.Gallo@gsfc.nasa.gov

Software testing is a well-defined phase of the software development life cycle.
Functional ("black box") testing and structural ("white box") testing are two methods of
test case design commonly used by software developers. A lesser known testing method
is risk-based testing, which takes into account the probability of failure of a portion of
code as determined by its complexity. For object oriented programs, a methodology is
proposed for identification of risk-prone classes.

Risk-based testing is a highly effective testing technique that can be used to find and fix
the most important problems as quickly as possible. Risk can be characterized by a
combination of two factors: the severity of a potential failure event and the probability of
its occurrence. Risk can be quantified by using the equation

Risk = ∑ p(Ei) * c(Ei),

Where i =1,2,…,n. n is the number of unique failure events, Ei are the possible failure
events, p is probability and c is cost.

Risk-based testing focuses on analyzing the software and deriving a test plan weighted on
the areas most likely to experience a problem that would have the highest impact
[McMahon]. This looks like a daunting task, but once it is broken down into its parts, a
systematic approach can be employed to make it very manageable.

The severity factor c(Ei) of the risk equation depends on the nature of the application and
is determined by domain analysis. For some projects, this might be the critical path,
mission critical, or safety critical sections. Severity assessment requires expert
knowledge of the environment in which the software will be used as well as a thorough
understanding of the costs of various failures. Musa addresses how to estimate the
severity of software failures in the discussion of "Operational Profiles" in his book,
Software Reliability Engineering. Both severity and probability of failure are needed
before risk-based test planning can proceed. Severity assessment is not addressed here
because it involves so much application-specific knowledge. Instead we confine the
remainder of the discussion to the first part of the risk equation, ranking the likelihood of
component failures, p(Ei), and a way to capture the information directly from the source
code, independent of domain knowledge.

The first task of risk-based testing is to determine how likely it is that each part of the
software will fail. It has been proven that code that is more complex has a higher

2

incidence of errors or problems [Pfleeger]. For example, cyclomatic complexity has been
demonstrated as one criterion for identifying and ranking the complexity of source code
[McCabe]. Therefore, using metrics to predict module failures might simply mean
identifying and sorting them by complexity. Then using the complexity rankings in
conjunction with severity assessments from domain risk analysis would identify which
modules should get the most attention. But module complexity is a univariate measure,
and it could fail to detect some very risk-prone code. In particular, object oriented
programming can result in deceptively low values for common complexity metrics. The
nature of object oriented code calls for a multivariate approach to measure complexity
[Rosenberg].

We are going to narrow the topic further and focus specifically on object oriented
software. The Software Assurance Technology Center (SATC) at NASA Goddard Space
Flight Center has identified and applied a set of six metrics for object oriented design
measurement. These metrics have been used in the evaluation of many NASA projects
and empirically supported guidelines have been developed for their interpretation. The
metrics are defined as follows:

1. Number of Methods is a simple count of the different methods in a class.
2. The Weighted Methods per Class (WMC) is a weighted sum of the methods in a class

[Chidamber]. If the weights are all equal, this metric is equivalent to the Number of
Methods metric. The Cyclomatic Complexity [McCabe] is used to evaluate the
minimum number of test cases needed for each method. Weighting the methods with
their complexities yields a more informative class metric.

3. Coupling Between Objects (CBO) is a count of the number of other classes to which
a class is coupled. It is measured by counting the number of distinct non-inheritance
related class hierarchies on which a class depends [Chidamber]. Coupled classes
must be bundled or modified if they are to be reused.

4. The Response for a Class (RFC) is the cardinality of the set of all methods that can be
invoked in response to a message to an object of the class or by some method in the
class [Chidamber].

5. Depth in Tree (DIT) - The depth of a class within the inheritance hierarchy is the
number of jumps from the class to the root of the class hierarchy and is measured by
the number of ancestor classes. When there is multiple inheritance, use the maximum
DIT.

6. Number of Children (NOC) - The number of children is the number of immediate
subclasses subordinate to a class in the hierarchy.

Having defined the metrics, we need interpretation guidelines to assist in identifying
those areas of code deemed to be at high risk. For over three years, the SATC has been
collecting and analyzing object oriented code written in both C++ and Java. Over 20,000
classes have been analyzed, from more than 15 programs. The results of the analyses
have been discussed with project managers and programmers to identify threshold values

3

that do a good job of discriminating between “solid” code and “fragile” code.∗ Once the
individual metric thresholds were determined, analysis revealed that a multivariate
approach provided an excellent basis for planning risk-based testing.

When we first began to apply some of the traditional metrics to object oriented code, we
saw that their values were generally much lower than we were accustomed to seeing for
functionally written code. Judging by the old thresholds, the OO code appeared to be
much less complex and much more modular than the non-OO legacy code. But because
of the fundamentally different way an OO system is built, the low numbers were often
very deceptive – ignoring the interactions between classes, and missing the complexities
due to the use of inheritance. The following threshold values for the individual metrics
were derived from studying the distributions of the metrics collected.

• Number of methods (NOM) - ≤ 20 preferred, ≤ 40 acceptable per class. The
counting tool included explicit constructors and destructors in the method counts, so
these thresholds are inflated. Taking that into account, the recommended number of
actual implemented methods translates to under 10 per class.
• Weighted Methods per Class (WMC) - ≤ 25 preferred, ≤ 40 acceptable. The
number of methods and the complexity of those methods are a predictor of how much
time and effort is required to develop and maintain the class. While the NOM may be
inflated by the beneficial use of constructors, WMC provides a better idea of the true
total complexity of a class.
• Response for Class (RFC) - ≤ 50. We have seen very few classes with RFC over
50. If the RFC is high, this means the complexity is increased and the
understandability is decreased. The larger the number of methods that can be invoked
from a class through messages, the greater the complexity of the class, complicating
testing and debugging. Making changes to a class with a high RFC will be very
difficult due to the potential for a ripple effect.
• RFC/NOM ≤ 5 for C++, ≤. 10 for Java. This adjusted RFC metric does a good
job of sifting out classes that need extensive testing, according to developer feedback.
The Java language enforces the use of classes for everything, which automatically
drives up the value of this metric.
• Coupling Between Objects (CBO) - ≤ 5. A high CBO indicates classes that may
be difficult to understand, reuse or maintain. The larger the CBO, the higher the
sensitivity to changes in other parts of the design and therefore maintenance is more
difficult. Low coupling makes the class easier to understand, less prone to errors
spawning, promotes encapsulation and improves modularity.
• Depth in Tree > 5 means that the metrics for a class probably understate its
complexity. DIT of 0 indicates a “root”; the higher the percentage of DIT’s of 2 and
3 indicate a higher degree of reuse. A majority of shallow trees (DIT’s < 2) may
represent poor exploitation of the advantages of OO design and inheritance. On the
other hand, an abundance of deep inheritance (DIT’s > 5) could be overkill, taking
great advantage of inheritance but paying the price in complexity. When there is such

∗It should be noted that the values of some of the OO metrics depend just as much on the design as they do on the
actual coding. Much of the complexity of an OO system is fully determined before the programmers begin to write the
code. Design complexity measurement is another topic that deserves researchers’ attention.

4

liberal use of inheritance, the aforementioned class metrics will understate the
complexity of the system.
• Number of Children (NOC) The greater the number of children, the greater the
likelihood of improper abstraction of the parent and need for additional testing, but
the greater the number of children, the greater the reuse since inheritance is a form of
reuse. While there is no “good” or “bad” number for NOC, its value becomes
important when a class is found to have high values for other metrics. The
complexity of the class is passed on to all of its child classes and total system
complexity is greater than it seemed at first glance.

A single metric should never be used alone to evaluate code risks, it takes at least two or
three to give a clear indication of potential problems. Therefore, for each project, the
SATC creates a table of high risk classes. High risk is identified as a class that has at least
two metrics that exceed the recommended limits. Table 1 is an example of information
that would be given to a project. The classes that exceed the expected limits are shaded.

Class # Methods CBO RFC RFC/NOM WMC DIT NOC

Class 1 54 8 536 9.9 175 1 0

Class 2 7 6 168 24 71 4 0

Class3 33 4 240 7.2 105 2 0

Class7 54 8 361 6.7 117 2 2

Class8 62 6 378 6.1 163 2 0

Class 10 63 7 235 3.7 156 2 0

Class 11 81 10 285 3.5 161 2 0

Class 12 42 5 127 3.0 69 3 0

Class 14 20 17 324 16.2 139 4 4

Class 18 46 5 186 4.0 238 1 3

Table 1 : High Risk Java Classes

5

The purpose of the above information is to identify the classes at highest risk for error.
While there is insufficient data to make precise ranking determinations, there is enough
information to justify additional testing of classes which exceed the recommended
specifications. It is up to the project to determine the criticality of these and the other
classes to make the final determination on testing. Allocating testing resources based on
these two factors, severity and likelihood of failures, amounts to risk-based testing.

Object oriented software metrics can be used in combination to identify classes that are
most likely to pose problems for a project. The SATC has used the data collected from
thousands of object oriented classes to determine a set of benchmarks that are effective in
identifying potential problems. When problematic classes are also identified by domain
experts as critical to the success of the project, testing can be allocated to mitigate risk.
Risk-based testing will allow developers to find and fix the most important software
problems earlier in the test phase.

6

References

Chidamber S.R. & Kemerer, C.F., “Towards a Metrics Suite for Object Oriented
Design"” Proc. OOPSLA, 1991.

Li, W. & Henry, S., “Maintenance Metrics for the object Oriented Paradigm”, 1st Int’l.
Software Metrics Symposium, Baltimore MD, 1993.

McCabe, Thomas J., “A Complexity Measure”, IEEE Transactions on Software
Engineering SE-2, pp 308-320, 1976

McMahon, Keith, "Risk Based Testing", ST Labs, WA, 1998.

Pfleeger, S.L. and Palmer, J.D., “Software Estimation for Object Oriented Systems,”
Int’l. Function Point Users Group Fall conference, San Antonio TX, 1990

Rosenberg, Linda, and Gallo, Albert, "Implementing Metrics for Object Oriented
testing", Practical Software Measurement Symposium, 1999.

